José María Martell Investigador Científico Instituto de Ciencias Matemáticas (ICMAT) C/ Nicolás Cabrera 13-15. Office 404
|
Weights, extrapolation and the theory of Rubio de Francia
D. Cruz-Uribe, J.M. Martell, and C. Pérez
Operator Theory: Advances and Applications, 215. Birkhäuser/Springer Basel AG, Basel, 2011
ISBN: 978-3-0348-0071-6.
The regularity problem for uniformly elliptic operators in weighted spaces
L. Chen, J.M. Martell, and C. Prisuelos-Arribas
Potential Anal. (to appear)Elliptic measures and Square function estimates on 1-sided chord-arc domains
M. Cao, J.M. Martell, and A. Olivo
J. Geom. Anal. 32 (2022), no. 3, 77. 34 páginasUniform rectifiability and elliptic operators satisfying a Carleson measure condition.
S. Hofmann, J.M. Martell, S. Mayboroda, T. Toro, and Z. Zhao
Geom. Funct. Anal. 31 (2021), no. 2, 325-401End-point estimates, extrapolation for multilinear Muckenhoupt classes, and applications
K. Li, J.M. Martell, H. Martikainen, S. Ombrosi, and E. Vuorinen
Trans. Amer. Math. Soc. 374 (2021), no. 1, 97-135Harmonic measure and quantitative connectivity: geometric characterization of the \(L^p\)-solvability of the Dirichlet problem
J. Azzam, S. Hofmann, J.M. Martell, M. Mourgoglou, and X. Tolsa
Invent. Math. 222 (2020), no. 3, 881-993Perturbations of elliptic operators in 1-sided chord-arc domains. Part II: Non-symmetric operators and Carleson measure estimates
J. Cavero, S. Hofmann, J.M. Martell, and T. Toro
Trans. Amer. Math. Soc. 373 (2020), no. 11, 7901-7935The generalized Hölder and Morrey-Campanato Dirichlet problems for elliptic systems in the upper half-space
J.J. Marín, J.M. Martell, and M. Mitrea
Potential Anal. 53 (2020), no.3, 947-976Extrapolation for multilinear Muckenhoupt classes and applications
K. Li, J.M. Martell, and S. Ombrosi
Adv. Math. 373 (2020), 107286. 43 páginasBoundedness results for commutators with BMO functions via weighted estimates: a comprehensive approach
Á. Bényi, J.M. Martell, K. Moen, E. Stachura, and R.H. Torres
Math. Ann. 376 (2020), no. 1-2, 61-102Conical square functions for degenerate elliptic operators
L. Chen, J.M. Martell, and C. Prisuelos-Arribas
Adv. Calc. Var. 13 (2020), no. 1, 75-113A Fatou Theorem and Poisson's Integral Representation Formula for Elliptic Systems in the Upper Half-Space
J.J. Marín, J.M. Martell, D. Mitrea, I. Mitrea, and M. Mitrea
Topics in Clifford Analysis: Special Volume in Honor of Wolfgang Sprößig, 105-124, Trends Math. Birkhäuser, Cham, 2019Fatou-Type Theorems and Boundary Value Problems for Elliptic Systems in the Upper Half-Space
J.M. Martell, D. Mitrea, I. Mitrea, and M. Mitrea
Algebra i Analiz 31 (2019), no. 2, 3-50
St. Petersburg Math. J. 31 (2020), no. 2, 189–222Rectifiability, interior approximation and Harmonic Measure
M. Akman, S. Bortz, S. Hofmann, and J.M. Martell
Ark. Mat. 57 (2019), no. 1, 1-22Perturbations of elliptic operators in 1-sided chord-arc domains. Part I: Small and large perturbation for symmetric operators
J. Cavero, S. Hofmann, and J.M. Martell
Trans. Amer. Math. Soc. 371 (2019), no. 4, 2797-2835The BMO-Dirichlet problem for elliptic systems in the upper half-space and quantitative characterizations of VMO
J.M. Martell, D. Mitrea, I. Mitrea, and M. Mitrea
Anal. PDE. 12 (2019), no. 3, 605-720Weighted Hardy spaces associated with elliptic operators. Part II: Characterizations of \(H^1_L(w)\)
J.M. Martell and C. Prisuelos-Arribas
Publ. Mat. 62 (2018), no. 2, 475-535Limited range multilinear extrapolation with applications to the bilinear Hilbert transform
D. Cruz-Uribe and J.M. Martell
Math. Ann. 371 (2018), no. 1, 615-653On the Kato problem and extensions for degenerate elliptic operators
D. Cruz-Uribe, J.M. Martell, and C. Rios
Anal. PDE. 11 (2018), no. 3, 609-660On the \(L^p\)-Poisson semigroup associated with elliptic systems
J.M. Martell, D. Mitrea, I. Mitrea and M. Mitrea
Potential Anal. 47 (2017), no. 4, 401-445\(A_\infty\) implies NTA for a class of variable coefficient elliptic operators
S. Hofmann, J.M. Martell, and T. Toro
J. Differential Equations 263 (2017), no. 10, 6147-6188Rectifiability and elliptic measures on 1-sided NTA domains with Ahlfors-David regular boundaries
M. Akman, M. Badger, S. Hofmann, and J.M. Martell
Trans. Amer. Math. Soc. 369 (2017), no. 8, 5711-5745The weak-\(A_\infty\) property of harmonic and \(p\)-harmonic measures implies uniform rectifiability
S. Hofmann, P. Le, J.M. Martell, and K. Nyström
Anal. PDE. 10 (2017), no. 3, 513-558Weighted Hardy spaces associated with elliptic operators. Part I: Weighted norm inequalities for conical square functions
C. Prisuelos-Arribas and J.M. Martell
Trans. Amer. Math. Soc. 369 (2017), no. 6, 4193-4233A new characterization of chord-arc domains
J. Azzam, S. Hofmann, J.M. Martell, K. Nyström, and T. Toro
J. Eur. Math. Soc. (JEMS) 19 (2017), no. 4, 967-981A note on the off-diagonal Muckenhoupt-Wheeden conjecture
D. Cruz-Uribe, J.M. Martell, and C. Pérez
Advanced courses of mathematical analysis V, 244-252, World Sci. Publ. Hackensack, NJ, 2016.The Dirichlet problem for elliptic systems with data in Köthe function spaces
J.M. Martell, D. Mitrea, I. Mitrea and M. Mitrea
Rev. Mat. Iberoam. 32 (2016), no. 3, 913-970Uniform Rectifiability, Carleson measure estimates, and approximation of harmonic functions
S. Hofmann, J.M. Martell, and S. Mayboroda
Duke Math. J. 165 (2016), no. 12, 2331-2389Rectifiability of harmonic measure
J. Azzam, S. Hofmann, J.M. Martell, S. Mayboroda, M. Mourgoglou, X. Tolsa, and A. Volberg
Geom. Funct. Anal. 26 (2016), no. 3, 703-728Oscillation estimates, self-improving results and good-\(\lambda\) inequalities
L. Berkovits, J. Kinnunen, and J.M. Martell
J. Funct. Anal. 270 (2016), no. 9, 3559-3590Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension one Hausdorff measure
J. Azzam, S. Hofmann, J.M. Martell, S. Mayboroda, M. Mourgoglou, X. Tolsa, and A. Volberg
C. R. Math. Acad. Sci. Paris. 354 (2016), 351-355Greedy Bases in variable Lebesgue spaces
D. Cruz-Uribe, E. Hernández, and J.M. Martell
Monatsh. Math. 179 (2016), no. 3, 355-378Self-improving properties for abstract Poincaré type inequalities
F. Bernicot and J.M. Martell
Trans. Amer. Math. 367, no. 7, (2015), 4793-4835Dyadic harmonic analysis beyond doubling measures
L.D. López-Sánchez, J.M. Martell, and J. Parcet
Adv. Math. 267 (2014), 44-93Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in \(L^p\)
S. Hofmann and J.M. Martell
Ann. Sci. École Norm. Sup. 47 (2014), no. 3, 577-654Uniform rectifiability and harmonic measure II: Poisson kernels in \(L^p\) imply uniform rectifiability
S. Hofmann, J.M. Martell, and I. Uriarte-Tuero
Duke Math. J. 163 (2014), no. 8, 1601-1654Uniform Rectifiability and Harmonic Measure III: Riesz transform bounds imply uniform rectifiability of boundaries of 1-sided NTA domains
S. Hofmann, J.M. Martell, and S. Mayboroda
Int. Math. Res. Not. 2014 (2014), no. 10, 2702-2729The higher order regularity Dirichlet problem for elliptic systems in the upper-half space
J.M. Martell, D. Mitrea, I. Mitrea and M. Mitrea
Harmonic Analysis and Partial Differential Equations
Proceedings of the 9th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial, June 11-15, 2012
Contemporary Mathematics 612 (2014), 123-141Calderón-Zygmund operators associated to matrix-valued kernels
G. Hong, L.D. López-Sánchez, J.M. Martell, and J. Parcet
Int. Math. Res. Not. 2014 (2014), no. 5, 1221-1252Self-improvement of Poincaré type inequalities associated with approximations of the identity and semigroups
A. Jiménez-del-Toro and J.M. Martell
Potential Anal. 38 (2013), no. 3, 805-841Weighted norm inequalities on graphs
N. Badr and J.M. Martell
J. Geom. Anal. 22 (2012), no. 4, 1173-1210Vertical versus conical square functions
P. Auscher, S. Hofmann, and J.M. Martell
Trans. Amer. Math. Soc. 364 (2012), no. 10, 5469-5489Sharp weighted estimates for classical operators
D. Cruz-Uribe, J.M. Martell, and C. Pérez
Adv. Math. 229 (2012), no. 1, 408-441\(A_\infty\) estimates via extrapolation of Carleson measures and applications to divergence form elliptic operators
S. Hofmann and J.M. Martell
Trans. Amer. Math. Soc. 364 (2012), no. 1, 65-101\(L^p\) self-improvement of generalized Poincaré inequalities in spaces of homogeneous type
N. Badr, A. Jiménez-del-Toro, and J.M. Martell
J. Funct. Anal. 260 (2011), no. 11, 3147-3188Quantifying democracy of wavelet bases in Lorentz spaces
E. Hernández, J.M. Martell, and M. de Natividade
Constr. Approx. 33 (2011), no. 1, 1-14A note on \(A_\infty\) estimates via extrapolation of Carleson measures
S. Hofmann and J.M. Martell
The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, ANU, Canberra, 13-17 July, 2009
Proceedings of the Centre for Mathematics and its Applications 44 (2010), 143-166Sharp weighted estimates for approximating dyadic operators
D. Cruz-Uribe, J.M. Martell, and C. Pérez
Electron. Res. Announc. Math. Sci. 17 (2010), 12-19Weighted norm inequalities, off-diagonal estimates and elliptic operators
P. Auscher and J.M. Martell
Harmonic Analysis and Partial Differential Equations
Proceedings of the 8th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial, June 16-20, 2008
Contemporary Mathematics 505 (2010), 61-83Generalized Hörmander's conditions and weighted endpoint estimates
M. Lorente, J.M. Martell, C. Pérez, and M.S. Riveros
Studia Math. 195 (2009), no. 2, 157-192Multilinear Extrapolation and applications to the bilinear Hilbert transform
M.J. Carro, L. Grafakos, J.M. Martell, and F. Soria
J. Math. Anal. Appl. 357 (2009), no. 2, 479-497Weighted norm inequalities for fractional operators
P. Auscher and J.M. Martell),
Indiana Univ. Math. J. 57 (2008), no. 4, 1845-1870Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part IV: Riesz transforms on manifolds and weights
P. Auscher and J.M. Martell
Math. Z. 260 (2008), no. 3, 527-539Generalized Hörmander's conditions, commutators and weights,
M. Lorente, J.M. Martell, M.S. Riveros, and A. de la Torre
J. Math. Anal. Appl. 342 (2008), no. 2, 1399-1425Wavelets, Orlicz spaces, and greedy bases
G. Garrigós, E. Hernández, and J.M. Martell
Appl. Comput. Harmon. Anal. 24 (2008), no. 1, 70-93Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture
D. Cruz-Uribe, J.M. Martell, and C. Pérez
Adv. Math. 216 (2007), no. 2, 647-676Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part II: Off-diagonal estimates on spaces of homogeneous type
P. Auscher and J.M. Martell
J. Evol. Equ. 7 (2007), 265-316Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights,
P. Auscher and J.M. Martell
Adv. Math. 212 (2007), no. 1, 225-276Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part III: Harmonic Analysis of elliptic operators,
P. Auscher and J.M. Martell
J. Funct. Anal. 241 (2006), 703-746Extrapolation with weights, Rearrangement Invariant Function Spaces, Modular inequalities and applications to Singular Integrals,
G.P. Curbera, J. García-Cuerva, J.M. Martell, and C. Pérez
Adv. Math. 203 (2006), no. 1, 256-318The boundedness of classical operators on variable \(L^p\) spaces,
D. Cruz-Uribe, A. Fiorenza, J.M. Martell, and C. Pérez
Ann. Acad. Sci. Fenn. Math. 31 (2006), 239-264Extensions of Rubio de Francia's extrapolation theorem
D. Cruz-Uribe, J.M. Martell, and C. Pérez
Proceedings of the 7th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial 2004)
Collect. Math. 2006, 195-231Weighted weak-type inequalities and a conjecture of Sawyer
D. Cruz-Uribe, J.M. Martell, and C. Pérez
Int. Math. Res. Not. 30 (2005), no. 5, 1849-1871Weighted norm inequalities for maximally modulated operators
L. Grafakos, J.M. Martell, and F. Soria
Math. Ann. 331 (2005), no. 2, 359-394Lack of natural weighted estimates for some singular integral operators
J.M. Martell, C. Pérez, and R.Trujillo-González
Trans. Amer. Math. Soc. 357 (2005), no. 1, 385-396Weighted norm inequalities for singular integral operators
J.M. Martell
Seminar of Mathematical Analysis (Malaga/Seville, 2003/2004), 119-129, Colecc. Abierta 71, Univ. Sevilla Secr. Publ., Seville, 2004Weighted norm inequalities and extrapolation
J.M. Martell
Seminar of Mathematical Analysis (Malaga/Seville, 2003/2004), 131-149, Colecc. Abierta 71, Univ. Sevilla Secr. Publ., Seville, 2004Extrapolation from \(A_\infty\) weights and applications
D. Cruz-Uribe, J.M. Martell, and C. Pérez
J. Funct. Anal. 213 (2004), 412-439Fractional integrals, potential operators and two-weight, weak type norm inequalities on spaces of homogeneous type
J.M. Martell
J. Math. Anal. Appl. 294 (2004), no. 1, 223-236Extrapolation of weighted norm inequalities for multivariable operators and applications
L. Grafakos and J.M. Martell
J. Geom. Anal.14 (2004), no. 1, 19-46Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications
J.M. Martell
Studia Math.161 (2004), 113-145\(L^p\) bounds for Riesz Transforms and Square Roots Associated to Second Order Elliptic Operators
S. Hofmann and J.M. Martell
Publ. Mat. 47 (2003), no. 2, 497-515Wavelet characterization of weighted spaces
J. García-Cuerva and J.M. Martell
J. Geom. Anal. 11 (2001), no. 2, 241-264Two-weight norm inequalities for maximal operator and fractional integrals on non-homogeneous spaces
J. García-Cuerva and J.M. Martell
Indiana Univ. Math. J. 50 (2001), no. 3, 1241-1280On the existence of principal values for the Cauchy integral on weighted Lebesgue spaces for non-doubling measures
J. García-Cuerva and J.M. Martell
J. Fourier Anal. Appl. 7 (2001), no. 5, 469-487Weighted inequalities and vector-valued Calderón-Zygmund operators on non-homogeneous spaces
J. García-Cuerva and J.M. Martell
Publ. Mat. 44 (2000), no. 2, 613-640
Perturbation of elliptic operators in 1-sided NTA domains satisfying the capacity density condition
M. Akman, S. Hofmann, J.M. Martell, and T. Toro
arXiv:1901.08261v3Transference of scale-invariant estimates from Lipschitz to Non-tangentially accessible to Uniformly rectifiable domains
S. Hofmann, J.M. Martell, and S. Mayboroda
arXiv:1904.13116On the \(A_\infty\) condition for elliptic operators in 1-sided NTA domains satisfying the capacity density condition.
M. Cao, Ó. Domínguez, J.M. Martell, and P. Tradacete
arXiv:2101.06064Extrapolation on function and modular spaces, and applications.
M. Cao, J.J. Marín, and J.M. Martell
arXiv:2101.06253Square function and non-tangential maximal function estimates for elliptic operators in 1-sided NTA domains satisfying the capacity density condition
M. Akman, S. Hofmann, J.M. Martell, and T. Toro
arXiv:2103.10046The regularity problem for degenerate elliptic operators in weighted spaces
P. Auscher, L. Chen, J.M. Martell, and C. Prisuelos-Arribas
arXiv:2106.14422
Uniform Rectifiability and harmonic measure IV: Ahlfors regularity plus Poisson kernels in \(L^p\) implies uniform rectifiability
S. Hofmann and J.M. Martell
arXiv:1505.06499Absolute continuity between the surface measure and harmonic measure implies rectifiability
S. Hofmann, J.M. Martell, S. Mayboroda, X. Tolsa, and A. Volberg
arXiv:1507.04409A sufficient geometric criterion for quantitative absolute continuity of harmonic measure
S. Hofmann and J.M. Martell
arXiv:1712.03696v1Harmonic measure and quantitative connectivity: geometric characterization of the \(L^p\)-solvability of the Dirichlet problem. Part I
S. Hofmann and J.M. Martell
arXiv:1712.03696v3Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part I: The small constant case
S. Hofmann, J.M. Martell, S. Mayboroda, T. Toro, and Z. Zhao
arXiv:1710.06157Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part II: The large constant case
S. Hofmann, J.M. Martell, S. Mayboroda, T. Toro, and Z. Zhao
arXiv:1908.03161Perturbation of elliptic operators in 1-sided NTA domains satisfying the capacity density condition
M. Akman, S. Hofmann, J.M. Martell, and T. Toro
arXiv:1901.08261v2