Program

Main program   -   Abstract of talks

Short talks program   -   Abstract of short talks


Place: Residencia San José, Avenida Reyes Católicos 12, El Escorial, Madrid.
Room: Sagrados Corazones.

Minicourses

(Three hour courses)

SpeakerInstitutionSlides of Courses
Emanuel CarneiroInternational Centre for Theoretical Physics – ICTP (Italy)
and Instituto de Matemática Pura e Aplicada - IMPA (Brazil)
Fourier optimization and number theory
Michael CowlingUniversity of New South Wales (Australia)Harmonic analysis and group representations
Jill PipherBrown University (USA)Elliptic equations and systems: the p- ellipticity condition

Invited Speakers

SpeakerInstitutionSlides of Talks
Kari AstalaUniversity of Helsinki (Finland)Burkholder functional, restricted quasiconvexity and energy integrals in non-linear elasticity
Neal BezSaitama University (Japan)The nonlinear Brascamp-Lieb inequality
David Cruz-UribeThe University of Alabama (USA)Jones factorization and Rubio de Francia extrapolation for matrix weights
Mikael de la SalleÉcole Normale Supérieure de Lyon. UMPA-CNRS (France)Fourier analysis with non commutative groups
Filippo De MariUniversità di Genova (Italy)Unitarization of the Radon Transform
Francesco Di PlinioUniversità di Napoli "Federico II"Maximal and singular operators in codimension 1 and higher
Philip GressmanUniversity of Pennsylvania (USA)Testing conditions for multilinear Radon-Brascamp-Lieb inequalities
Steve HofmannUniversity of Missouri-Columbia (USA)Caloric measure and regular Lip(1,1/2) graphs
Demetrio LabateUniversity of Houston (USA)Provable approximations on smooth manifolds using deep neural networks
Nir LevBar-Ilan University (Israel)Fuglede’s tiling-spectrality conjecture for convex domain
Victor LiePurdue University (USA)The LGC method
Joan MateuUniversidad Autónoma de Barcelona (Spain)Global minimisers of energies related to dislocations
Joshua ZahlThe University of British Columbia (Canada)Real algebraic geometry, and the Kakeya and Restriction conjectures
Ruixiang ZhangUniversity of California, Berkeley (USA)Local smoothing for the wave equation in 2 + 1 dimensions