
Bernoulli actions of type III and L2-cohomology

(joint work with Jonas Wahl)

Workshop L2-invariants

ICMAT, Madrid, 4-8 June 2018

Stefaan Vaes∗

∗ Supported by ERC Consolidator Grant 614195

1/18



Bernoulli actions

Bernoulli actions of a countable group G
For any standard probability space (X0, µ0), consider

G y (X0, µ0)G =
∏
g∈G

(X0, µ0) given by (g · x)h = xg−1h.

I (G = Z) Kolmogorov-Sinai : entropy of µ0 is a conjugacy invariant.

I (G = Z) Ornstein : entropy is a complete invariant.

I Bowen : beyond amenable groups, sofic groups.

I Popa : orbit equivalence rigidity, von Neumann algebra rigidity.

What can be said about G y
∏
g∈G

(X0, µg ) ?

Main motivation: produce interesting families of type III group actions.

2/18



Group actions of type III

I The classical Bernoulli action G y (X , µ) = (X0, µ0)G

• is ergodic,

• preserves the probability measure µ.

I An action G y (X , µ) is called non-singular if µ(g · U) = 0
whenever µ(U) = 0 and g ∈ G .

I Write U ∼ V if there exists a measurable bijection ∆ : U → V with
∆(x) ∈ G · x for a.e. x ∈ U .

I A nonsingular ergodic G y (X , µ) is of type III if U ∼ V for all
non-negligible U ,V ⊂ X .

• There is no G -invariant measure in the measure class of µ.

• The Radon-Nikodym derivative d(g ·µ)/dµ must be sufficiently wild.
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Group actions of type III1

Let G y (X , µ) be a nonsingular group action.

I Write ω(g , x) =
d(g · µ)

dµ
(x), the Radon-Nikodym 1-cocycle.

I The action G y X × R given by g · (x , s) = (g · x , s + log(ω(g , x)))
preserves the (infinite) measure µ× e−sds.

I This is called the Maharam extension. It is the ergodic analogue of
the Connes-Takesaki continuous core for von Neumann algebras.

An ergodic nonsingular action G y (X , µ) is of type III1 if its
Maharam extension remains ergodic.

Digression: the action R y L∞(X ×R)G is the flow of weights.

G y (X , µ) is of type III iff this flow is not just R y R.
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Bernoulli actions of type III

Consider G y (X , µ) =
∏
g∈G

(X0, µg ) given by (g · x)h = xg−1h.

1 All µg are equal : type II1, ergodic, probability measure preserving.

2 Interesting gray zone : when is G y (X , µ) of type III, or type III1 ?

3 The µg are quite different : type I, the action is dissipative, meaning

that X =
⊔
g∈G

g · U up to measure zero.

4 The µg are very different : the action is singular.
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Kakutani’s criterion

I The action G y
∏
g∈G

(X0, µg ) is nonsingular if and only if

for every g ∈ G , we have
∑
h∈G

d(µgh, µh)2 <∞.

I Take X0 = {0, 1} with µg (0) = F (g) and µg (1) = 1− F (g).

Assume that δ ≤ F (g) ≤ 1− δ for all g ∈ G .

Then, the action is nonsingular if and only if∑
h∈G
|F (gh)− F (h)|2 <∞ for all g ∈ G .

Then c : G → `2(G ) : cg (h) = F (g−1h) − F (h) is a 1-cocycle
for the left regular representation,

meaning that cgh = cg + λgch.
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L2-cohomology and L2-Betti numbers

Consider the L2-cohomology H1(G , `2(G )) : the space of 1-cocycles
divided by the 1-coboundaries, i.e. the 1-cocycles of the form cg = ξ − λgξ
for some ξ ∈ `2(G ).

I The right action of G commutes with the left action λg .

I In this way, H1(G , `2(G )) becomes a right L(G )-module, where L(G )
is the group von Neumann algebra of G .

I Then, β
(2)
1 (G ) is the Murray-von Neumann dimension of this module.

I (Cheeger-Gromov) When G is amenable, we have β
(2)
1 (G ) = 0,

although for infinite amenable G , we have H1(G , `2(G )) 6= {0}.

I For nonamenable groups G , we have β
(2)
1 (G ) = 0 if and only if

H1(G , `2(G )) = {0}.
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An easy no-go theorem

Theorem (V-Wahl, 2017)

If H1(G , `2(G )) = {0}, there are no nonsingular Bernoulli actions of
type III. More precisely,

every nonsingular Bernoulli action of G is the sum of a classical, probability
measure preserving Bernoulli action and a dissipative Bernoulli action.

I The groups with H1(G , `2(G )) = {0} are precisely the nonamenable

groups with β
(2)
1 (G ) = 0.

I Large classes of nonamenable groups have β
(2)
1 (G ) = 0 :

• property (T) groups,

• groups that admit an infinite, amenable, normal subgroup,

• direct products of infinite groups.
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What if H1(G , `2(G)) 6= {0} ?

This is very delicate !

Even for the case G = Z.

I (Hamachi, 1981)

The group G = Z admits a nonsingular Bernoulli action of type III

I (Kosloff, 2009)

The group G = Z admits a nonsingular Bernoulli action of type III1

In both cases: no explicit construction.
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What if H1(G , `2(G)) 6= {0} ?

Theorem (V-Wahl, 2017)

Take Z yT
∏
n∈Z

({0, 1}, µn).

For n ≤ 0, we take µn(0) = 1/2. For n ≥ 1, we take respectively

I (folklore) µn(0) = p with 1/2 < p < 1 : the action T is dissipative,

I µn(0) =
1

2
+

1

6
√
n

: the action T is ergodic and of type III1, but the

73-fold diagonal product T × · · · × T is dissipative,

I µn(0) =
1

2
+

1√
5 + n log n

: the action T and all its powers are

ergodic and of type III1,

I (Kakutani)
∑

n(µn(0)− 1/2)2 <∞ : type II1, classical Bernoulli
action.
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Main results of V-Wahl (2017)

Theorem A

All infinite amenable groups G admit nonsingular, ergodic Bernoulli
actions of type III1.

For most of these, we can take X0 = {0, 1}.

Theorem B

Most countable groups G with β
(2)
1 (G ) > 0 admit nonsingular, ergodic

Bernoulli actions of type III1.

We can prove Theorem B in the following cases:

1 when G admits an infinite subgroup G0 < G with β
(2)
1 (G0) < β

(2)
1 (G ),

2 when G admits a subgroup G0 < G with β
(2)
1 (G )−1 ≤ [G : G0] <∞.
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Group theoretic observations

Assume that β
(2)
1 (G ) > 0.

1 The existence of an infinite subgroup G0 < G with

β
(2)
1 (G0) < β

(2)
1 (G ) is automatic in the following cases.

• When G has at least one element of infinite order.

• When G admits an infinite amenable subgroup.

• When β
(2)
1 (G ) ≥ 1, relying on the following remarkable result.

If Γ is any infinite group and if every pair of elements a, b ∈ Γ
generates a finite subgroup, then Γ contains an infinite abelian
subgroup !

All known proofs invoke the Feit-Thompson odd order theorem.

2 The existence of a subgroup G0 < G with β
(2)
1 (G )−1 ≤ [G : G0] <∞

is automatic if G is residually finite.
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The easiest case of Theorem B

Assume that G0 < G is an infinite subgroup with β
(2)
1 (G0) < β

(2)
1 (G ).

I The restriction map H1(G , `2(G ))→ H1(G0, `
2(G )) has nontrivial

kernel.

I We can pick a 1-cocycle c : G → `2(G ) with ch = 0 for all h ∈ G0.

I We can write cg (k) = F (g−1k)− F (k).

We may assume F : G → [1/3, 2/3].

I Define X0 = {0, 1} and µg (0) = F (g).

Then, G y
∏
g∈G

(X0, µg ) is ergodic and of type III1.

Main idea: if a function F on X × R is invariant under the Maharam
extension, then it is G0-invariant and thus, it only depends on the
R-variable.
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Non orbit equivalent Bernoulli actions of free groups

I (Bowen) For a fixed n, all classical Bernoulli actions Fn y (X0, µ0)Fn

are orbit equivalent.

I (V-Wahl) There are many non-orbit equivalent, strongly ergodic,
type III1 Bernoulli actions Fn y

∏
g∈Fn

(X0, µg ).

I When G y (X , µ) is nonsingular and strongly ergodic, then
H1(G y X , S1) is a Polish group.

Denoting by ω ∈ H1(G y X ,R∗+) the Radon-Nikodym 1-cocycle, we
obtain a group homomorphism R→ H1(G y X , S1) : t 7→ ωit .

(Connes, Houdayer-Marrakchi-Verraedt) The τ -invariant is defined as
the weakest topology on R making this homomorphism continuous.
This is an orbit equivalence invariant.

I We obtain strongly ergodic, type III1 Bernoulli actions
Fn y

∏
g∈Fn

(X0, µg ) with all kinds of prescribed τ -invariants.

14/18



Nonsingular Bernoulli actions of amenable groups

Let G be an infinite amenable group.

(Peterson-Thom) A 1-cocycle c : G → `2(G ) is either inner or
proper.

So, if cg = 0 on an infinite subgroup, then cg = 0 for all g ∈ G .

Important step: when is G y
∏
g∈G

({0, 1}, µg ) conservative ?

Recall: a nonsingular action G y (X , µ) is dissipative if X =
⊔

g∈G g · U ,
up to measure zero.

It is conservative if for every non-negligible U ⊂ X , there exists a g 6= e
with µ(U ∩ g · U) > 0.

Question: when is a nonsingular Bernoulli action conservative ?
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Conservative Bernoulli actions

Consider a nonsingular Bernoulli action G y
∏
g∈G

({0, 1}, µg ).

I As before, write F (g) = µg (0).

I Denote c : G → `2(G ) : cg (h) = F (g−1h)− F (h).

Theorem (V-Wahl, 2017)

Assume 1/3 ≤ F (g) ≤ 2/3 for all g ∈ G .

I If
∑
g∈G

exp
(
−16 ‖cg‖22

)
= +∞, the Bernoulli action is conservative.

I If
∑
g∈G

exp
(
−1

2
‖cg‖22

)
<∞, the Bernoulli action is dissipative.

Even for G = Z, no conservativeness criterion was known before.

A multiple diagonal product may change conservative to dissipative.
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Type III Bernoulli actions for amenable groups

Similar to Cornulier-Tessera-Valette : for G infinite amenable, there exist
proper 1-cocycles c : G → `2(G ) of arbitrarily slow growth.

Plenty of conservative nonsingular Bernoulli actions.

Details in the case of G = Z
I Fix 0 < λ < 1 and µn(0) = λ for all n ≤ 0.

I Assume that the conservativeness criterion holds (by choosing a
slowly growing 1-cocycle).

If limn→+∞ µn(0) = λ and
∑

n(µn(0)− λ)2 = +∞, then the Bernoulli
action is ergodic and of type III1.

Essence of the proof...
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Faits divers and open questions

I For free groups Fn with n ≥ 2 and for nontrivial free product groups
G = Λ ∗ Z, we construct nonsingular Bernoulli actions of type IIIλ.

I Open problem: does Z admit a Bernoulli action of type IIIλ ?

(Danilenko-Lemanczyk) The answer is no if we assume that the
measures µn with n ≤ 0 are the same.

I For the free group F2, we construct an explicit Bernoulli action
F2 y (X , µ) with the following properties.

• Ergodic and of type III1.

• The action of each individual element g ∈ F2 \ {e} is dissipative.

• The diagonal product F2 y X 220 is dissipative.

I Open problem: a concrete ergodicity criterion for nonsingular
Bernoulli actions.
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