Frank Pollmann

Technische Universität München

Mike Zaletel Shenghsuan Lin Wilhelm Kadow Michael Knap

Tensor Networks: Mathematical Structures and Novel Algorithms **Outline**

2D Tensor-Network State ansatz that allows for efficient contractions: isoTNS

- ◆ TEBD² to perform time evolution
- ▶ DMRG² to obtain ground states
- ‣ Purification of isoTNS for thermal states

Matrix-product states (MPS): Reduction of the number of variables: $d^L \rightarrow L d \chi^2$ _[M. Fannes et al. 92]

$$
\psi_{j_1,j_2,j_3,j_4,j_5} = \sum_{\alpha_1,\alpha_2,\ldots,\alpha_4}^{\chi} M_{\alpha_1}^{j_1} M_{\alpha_1,\alpha_2}^{j_2} M_{\alpha_2,\alpha_3}^{j_3} M_{\alpha_3,\alpha_4}^{j_4} M_{\alpha_4}^{j_5}
$$

Matrix-product states (MPS): Reduction of the number of variables: $d^L \to L d \chi^2$ _[M. Fannes et al. 92] $L \rightarrow L d \chi^2$ $\psi_{j_1,j_2,j_3,j_4,j_5} =$ $M^{[1]} \; M^{[2]} \; M^{[3]} \; M^{[4]} \; M^{[5]}$ $M_{_O}^j$ *α*,*β* $=$ α \rightarrow β *M* $\alpha,\beta=1...\chi$ $j = 1...d$ *j*

Matrix-product states (MPS): Reduction of the number of variables: $d^L \rightarrow L d \chi^2$ _[M. Fannes et al. 92] $\psi_{j_1,j_2,j_3,j_4,j_5} =$ $M^{[1]} \; M^{[2]} \; M^{[3]} \; M^{[4]} \; M^{[5]}$ $M_{_O}^j$ *α*,*β* $=$ α \rightarrow β *M* $\alpha,\beta=1...\chi$ $j = 1...d$ *j*

Isometric form: Use the gauge degree of freedom ($A^j = XM^jX^{-1}$) to find a convenient representation

Matrix-product states (MPS): Reduction of the number of variables: $d^L \rightarrow L d \chi^2$ _[M. Fannes et al. 92] $\psi_{j_1,j_2,j_3,j_4,j_5} =$ $M^{[1]} \; M^{[2]} \; M^{[3]} \; M^{[4]} \; M^{[5]}$ $M_{_O}^j$ *α*,*β* $=$ α \rightarrow β *M* $\alpha,\beta=1...\chi$ $j = 1...d$ *j*

Isometric form: Use the gauge degree of freedom ($A^j = XM^jX^{-1}$) to find a convenient representation

Center matrix Λ represents wave function

$$
|\psi\rangle = \sum_{\alpha,\beta,j} \Lambda^j_{\alpha,\beta} | \alpha \rangle |j \rangle | \beta \rangle
$$

(orthogonal states $|j\rangle$, $|\alpha\rangle$, $|\beta\rangle$)

MPS capture 1D area law \rightarrow Exponential scaling in 2D

MPS capture 1D area law \rightarrow Exponential scaling in 2D

How to generalize the MPS approach to 2D?

MPS capture 1D area law \rightarrow Exponential scaling in 2D

How to generalize the MPS approach to 2D?

‣Tensor Network States (TNS)

[Maeshima et al. '01, Verstraete and Cirac '04]

MPS capture 1D area law \rightarrow Exponential scaling in 2D

How to generalize the MPS approach to 2D?

- ▶ Tensor Network States (TNS) [Maeshima et al. '01, Verstraete and Cirac '04]
- ‣Capture 2D area law*
- ‣Difficult to handle numerically: Exact contraction of the 2D network is still exponentially hard \heartsuit

Recall: Canonical form of 1D MPS

Isometric TNS

 $A^{[1]} A^{[2]} A^{[3]} B^{[4]} B^{[5]}$

‣Isometric tensors are efficiently contractable

*A**

 $= 1$

‣Orthogonality center column is a **ID MPS:** Standard DMRG techniques

B

*B**

see also: Bañuls, Perez-García, Wolf, Verstraete, Cirac '08 Wei, Malz, Cirac '22 [Zaletel and FP, PRL 124, 037201 (2020)]

=1 (Isometries)

Recall: Canonical form of 1D MPS

Isometric TNS

 $A^{[1]} A^{[2]} A^{[3]} B^{[4]} B^{[5]}$

‣Isometric tensors are efficiently contractable

*A**

 $= 1$

‣Orthogonality center column is a **ID MPS:** Standard DMRG techniques

B

*B**

‣Subset of TNS: Unclear what its variational power is!

see also: Bañuls, Perez-García, Wolf, Verstraete, Cirac '08 Wei, Malz, Cirac '22 [Zaletel and FP, PRL 124, 037201 (2020)]

=1 (Isometries)

Which states ca be represented as isoTNS?

All string net states can be represented exactly as isoTNS

‣ Error density becomes independent of the system size when *L* ≫ *ξ*

[Soejima, Siva, Bultinck, Chatterjee, FP, Zaletel, PRB 101, 085117 (2020)]

How to shift the orthogonality center?

Recall: **ID MPS** $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD

How to shift the orthogonality center?

Recall: **ID MPS** $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD

Not possible for 2D TNS as it would destroy the locality of Λ

How to shift the orthogonality center?

Recall: **ID MPS** $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD

Not possible for 2D TNS as it would destroy the locality of Λ

Solve the variational problem:

How to shift the orthogonality center?

Recall: **ID MPS** $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD Not possible for 2D TNS as it would destroy the locality of Λ

Solve the variational problem:

 $A^{[1]}$ $\Lambda^{[2]}$ $B^{[3]}$ $B^{[4]}$

How to shift the orthogonality center?

Recall: **ID MPS** $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD Not possible for 2D TNS as it would destroy the locality of Λ

Solve the variational problem:

How to shift the orthogonality center?

Recall: **ID MPS** $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD Not possible for 2D TNS as it would destroy the locality of Λ

Solve the variational problem:

Sequential splitting based on disentangling: "Moses Move" (MM)

[Zaletel and FP, PRL 124, 037201 (2020)]

 $\overline{B_{\!R}}$

Variationally disentangle the state: minimize the Renyi **entanglement entropy** $S_2 = -\ln \text{Tr} \rho_{\text{red}}^2$ on each bond $|\tilde{\psi}\rangle$: A B U_{bond}

Variationally disentangle the state: minimize the Renyi **entanglement entropy** $S_2 = -\ln \text{Tr} \rho_{\text{red}}^2$ on each bond \overline{B} \overline{A} $\tilde{\rho}$:

Variationally disentangle the state: minimize the Renyi **entanglement entropy** $S_2 = -\ln \text{Tr} \rho_{\text{red}}^2$ on each bond \overline{A} \overline{B}

 $\tilde{\rho}_{\text{red.}}$:

Variationally disentangle the state: minimize the Renyi entanglement entropy $S_2 = -\ln Tr \rho_{\text{red}}^2$ on each bond \overline{A} \overline{B} $\tilde{\rho}_{\rm red.}$:

 $\tilde{\rho}_{\rm red.}$:

Variationally disentangle the state: minimize the Renyi **entanglement entropy** $S_2 = -\ln \text{Tr} \rho_{\text{red}}^2$ on each bond \overline{A} \overline{B} $\tilde{\rho}_{\rm red.}^2$:

Variationally disentangle the state: minimize the Renyi **entanglement entropy** $S_2 = -\ln \text{Tr} \rho_{\text{red}}^2$ on each bond \overline{A} \overline{B} $\text{Tr}\tilde{\rho}_{\text{red}}^2$

Variationally disentangle the state: minimize the Renyi **entanglement entropy** $S_2 = -\ln Tr \rho_{\text{red}}^2$ on each bond \overline{A} \overline{B} $\left(\text{Tr}\tilde{\rho}_{\text{red}}\right)_{U=1}=$ $\frac{\partial}{\partial U}$ • Polar decomposition to minimize S_2 [Evenbly & Vidal '09]

Role of the disentangler:

Role of the disentangler: Variational vs. Moses Move:

Convert quasi 1D MPS to isometric TNS

"Peel off" layers from MPS representation of 2D state

Convert quasi 1D MPS to isometric TNS

"Peel off" layers from MPS representation of 2D state $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Time evolution of 2D Hamiltonians (TEBD2)

algorithm on the center columns/rows: 2nd order [Vidal '03] Sequentially apply 1D Time-Evolving Block Decimation (TEBD)

Time evolution of 2D Hamiltonians (TEBD2)

algorithm on the center columns/rows: 2nd order [Vidal '03] Sequentially apply 1D Time-Evolving Block Decimation (TEBD)

Variational optimization (DMRG2)

Iteratively minimize the energy by sequentially optimizing the isometries

Variational optimization (DMRG2)

Iteratively minimize the energy by sequentially optimizing the isometries

2D transverse field Ising Model $(g = 3.0)$

$$
H = -\sum_{\langle i,j\rangle} \sigma_i^z \sigma_j^z - g \sum_i \sigma^x
$$

Real time evolution of $|\psi_0(t)\rangle = e^{-iHt} \sigma^y |\psi_0\rangle$ for the transverse field Ising model (paramagnetic phase)

‣ Good convergence at small bond dimension *χ*

Numerical calculation of the dynamical structure factor

$$
S(k, \omega) = \sum_{x} \int_{-\infty}^{\infty} dt \ e^{-i(kx + \omega t)} C(x, t)
$$

with
$$
C(x, t) = \langle \psi_0 | \sigma_x^y(t) \sigma_0^y(0) | \psi_0 \rangle
$$

∞

Numerical calculation of the **dynamical structure factor**

$$
S(k, \omega) = \sum_{x} \int_{-\infty}^{\infty} dt \ e^{-i(kx + \omega t)} C(x, t)
$$

with
$$
C(x, t) = \langle \psi_0 | \sigma_x^y(t) \sigma_0^y(0) | \psi_0 \rangle
$$

(1) Find the ground state $|\psi_0\rangle$: DMRG²

(2) Time evolve $\sigma_0^y | \psi_0 \rangle$ to obtain $C(x, t)$

Numerical calculation of the **dynamical structure factor**

$$
S(k, \omega) = \sum_{x} \int_{-\infty}^{\infty} dt \ e^{-i(kx + \omega t)} C(x, t)
$$

with
$$
C(x, t) = \langle \psi_0 | \sigma_x^y(t) \sigma_0^y(0) | \psi_0 \rangle
$$

(1) Find the ground state $|\psi_0\rangle$: DMRG²

(2) Time evolve $\sigma_0^y | \psi_0 \rangle$ to obtain $C(x, t)$

Slow growth of entanglement: Long times!

Dynamical structure factor: Transverse field Ising

$$
H = -\sum_{\langle i,j\rangle} \sigma_i^z \sigma_j^z - g \sum_i \sigma^x
$$

 $S^{yy}(k,\omega)$

Dynamical structure factor: Kitaev model

$$
H = J \sum_{\langle i,j \rangle_{\alpha=x,y,z}} \sigma_i^{\alpha} \sigma_j^{\alpha}
$$

isoTNS representations of thermal states

Purified isometric tensor networks

[Verstraete, Ripoll, Cirac '04]

isoTNS representations of thermal states

[Kadow, FP, Knap, arXiv:2302.07905]

isoTNS representations of thermal states

[Kadow, FP, Knap, arXiv:2302.07905]

Outline

2D Tensor-Network State ansatz that allows for efficient contractions: isoTNS

- **TEBD**² to perform time evolution
- ▶ DMRG² to obtain ground states
- ‣ Purification of isoTNS

Mike Zaletel Shenghsuan Lin Wilhelm Kadow Michael Knap

