A note on extreme points of X^{∞} -smooth balls in polyhedral spaces Antonio J. GUIRAO (Universidad Politécnica de Valencia – Spain)

Morris proved that every separable Banach space X that contains an isomorphic copy of c_0 has an equivalent strictly convex norm such that all points of its unit sphere S_X are unpreserved extreme, i.e., they are no longer extreme points of $B_{X^{**}}$. We use a result of Hájek to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent C^{∞} -smooth and strictly convex norm with the same property as in Morris? result. We additionally show that no point on the sphere of a C^2 -smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point x on the sphere for which a sequence (h_n) in X with $||h_n|| \neq 0$ exists such that $||x \pm h_n|| \to 1$.

Joint work with V. Montesinos and V. Zizler.